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Abstract

Summary: High-throughput sequencing of transfer RNAs (tRNA-Seq) is a powerful approach to characterize the cellular
tRNA pool. Currently, however, analyzing tRNA-Seq datasets requires strong bioinformatics and programming skills.
tRNAstudio facilitates the analysis of tRNA-Seq datasets and extracts information on tRNA gene expression, post-
transcriptional tRNA modification levels, and tRNA processing steps. Users need only running a few simple bash com-
mands to activate a graphical user interface that allows the easy processing of tRNA-Seq datasets in local mode. Output
files include extensive graphical representations and associated numerical tables, and an interactive html summary report
to help interpret the data. We have validated tRNAstudio using datasets generated by different experimental methods and
derived from human cell lines and tissues that present distinct patterns of tRNA expression, modification and processing.

Availability and implementation: Freely available at https://github.com/GeneTranslationLab-IRB/tRNAstudio under
an open-source GNU GPL v3.0 license.

Contact: adriangabriel.torres@irbbarcelona.org or lluis.ribas@irbbarcelona.org.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transfer RNAs (tRNAs) are small non-coding RNAs that bring
amino acids to the ribosome for protein synthesis. They are tran-
scribed as longer precursor tRNAs (pre-tRNAs) that need to be
processed and chemically modified in order to become fully active.
Mature tRNAs can also be further processed into tRNA-derived
fragments (tRFs) that perform a wide range of non-canonical tRNA
functions (Su et al., 2020).

High-throughput sequencing of tRNAs is a powerful approach
to study tRNA biology (Torres et al., 2015, 2019). Several methods
have been developed to sequence tRNAs, ranging from standard
small RNA-Seq to specialized methods such as DM-tRNA-Seq
(Zheng et al., 2015), Arm-Seq (Cozen et al., 2015), YAMAT-Seq
(Shigematsu et al., 2017), mim-tRNA-Seq (Behrens et al., 2021),
AQRNA-Seq (Hu et al., 2021), among others (we herein refer to any
deep sequencing method that can detect tRNA reads as ‘tRNA-
Seq’). However, analyzing tRNA-Seq datasets is computationally
challenging and requires specialized bioinformatics and program-
ming skills (Hoffmann et al., 2018).

Here, we present tRNAstudio, an integrative pipeline to analyze
human tRNA-Seq datasets that is packaged into a user-friendly
graphical user interface (GUI) implemented in local mode. Using

publicly available datasets, we show that tRNAstudio can extract in-
formation on tRNA expression, processing and post-transcriptional
modification status. The pipeline output includes an interactive html
summary report, extensive graphical data representations, and
spreadsheets useful for custom analyses.

2 Description and implementation

tRNAstudio is implemented as a GUI (Fig. 1), built with the Python
library Tkinter, prepared to run in Mac (OS X El Capitan or higher)
and Linux-based platforms, and designed for the analysis of human
tRNAs using, as input, tRNA-Seq datasets generated by single- or
paired-end sequencing. The code was primarily written in Python3
and R. tRNAstudio uses a Conda environment that includes the in-
stallation of R package, python modules and all the requirements
and dependencies needed to perform tRNA analyses (Bowtie2,
Samtools, Bedtools, Pysam, Pysamstats and Picard). To run
tRNAstudio, the user will need to be familiar with a command-line
interface and simple bash commands. The installation of Conda and
the creation of the environment is executed by running the require-
ments script (‘bash requirements.sh’). To activate the Conda envir-
onment and to launch the GUI the user needs to run only two
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commands: ‘conda activate tRNAstudioEnv’ and ‘python3
tRNAstudioGUI’, respectively. Detailed methodological descrip-
tions of tRNAstudio are available in Supplementary Methods.
tRNAstudio can be run in standard computers but we recommend
at least 8 cores, 16 Gb of RAM and 100 Gb of available ROM.
Under these conditions, four samples (around 10 Gb of information
per sample) can be analyzed in 2–3 h.

Processing of tRNA-Seq datasets is achieved in six simple steps.
The first time tRNAstudio is implemented, the user will download
the reference Human Genome hg38 (Fig. 1A). Next, samples (data-
sets: Fastq files) of interest are directly downloaded from the Gene
Expression Omnibus public repository (https://www.ncbi.nlm.nih.
gov/gds/) by providing the run accession ID (prefixes SRR . . .,
ERR . . ., DRR . . .) (Fig. 1B). Users can also analyze manually down-
loaded datasets from other repositories, or their own datasets, upon
incorporating the desired Fastq files into the ‘Fastq_downloaded’
folder of tRNAstudio. Samples that are to be aligned against the ref-
erence genomes are selected and labeled in a metadata file that is
required for comparative analyses among samples (Fig. 1C).
Labeling information includes the group to where the sample
belongs to (e.g. ‘Control’ samples and ‘Treated’ samples) and
whether the selected datasets have been generated by single- or
paired-end sequencing. The alignment pipeline is then executed
(Fig. 1D) and a pop-up dialogue will inform when the alignments
are done. The user can choose which of the aligned samples will be
used for data analysis (Fig. 1E). Previously aligned samples can also
be selected. Last, the data analysis is performed (Fig. 1F), results are
saved, and an html summary report is generated to help the user in-
terpret the data. tRNAstudio and detailed instructions of use can be
found at https://github.com/GeneTranslationLab-IRB/tRNAstudio.

3 Results

tRNAstudio performs serial alignments against the whole human
genome and against custom genomes as depicted in Supplementary
Figure S1. Custom genomes are built with all unique human tRNA
sequences, either in the form of pre-tRNAs (genomic sequences with
50- and 30-flanking regions; only applicable for nuclear-encoded
tRNAs) or mature tRNAs (tRNA sequences without flanking and in-
tronic regions, with 30-CCA trinucleotide addition, and, in the case
of tRNAHis, with a 50-G addition; applicable to nuclear- and
mitochondrial-encoded tRNAs). To aid in the identification of
tRNA genes, we provide a file that links each tRNA gene analyzed
by tRNAstudio using hg38 to its corresponding gene in hg19, its
tRNA ‘license plate’ (Pliatsika et al., 2016), and a hyperlink to add-
itional gene expression information from MINTbase (Pliatsika
et al., 2016; Supplementary Table S1).

Datasets are first aligned against the whole human genome.
Reads mapping to non-tRNA genes are discarded and reads map-
ping to tRNA genes are classified as ‘mitochondrial’ (if mapped to
mitochondrial-encoded tRNA genes) or ‘cytosolic’ (if mapped to
nuclear-encoded tRNA genes). Given the polycistronic nature of
mitochondrial transcripts (Ojala et al., 1981), reads classified as
derived from mitochondrial tRNAs (mt-tRNA) are then aligned
against a custom mature mt-tRNA genome to remove unprocessed
mitochondrial transcripts that may partially overlap with mt-tRNA
genes. Remaining mapped reads are kept for further analyses. Reads
classified as derived from cytosolic tRNAs, and unmapped reads
resulting from the initial mapping against the whole genome under-
go serial alignments against custom tRNA genomes as described in
Supplementary Methods (Supplementary Fig. S1). As a virtue of
these serial alignment strategy, tRNAstudio improves both the re-
covery of reads mapped to nuclear-encoded tRNA genes and the
alignment quality of the reads when compared against alignment
strategies that use single reference genomes (Supplementary
Fig. S2A). Users of tRNAstudio obtain absolute read counts for
every nuclear- and mitochondrial-encoded tRNA genes, and their
corresponding mapping quality score (MAPQ; Supplementary
Methods and Fig. S2B). Of note, tRNAstudio considers all mapped
tRNA reads for analysis, regardless of their MAPQ or whether they
are derived from tRNAs with or without natural post-
transcriptional nucleotide additions (i.e. tRNAHis 50-G or partial or
full 30-CCA) (further details in Supplementary Methods).

Mapped reads are then used for differential tRNA gene expres-
sion analyses using two complementary methods: DESeq2 (Love
et al., 2014) and iso-tRNA-CP (Torres et al., 2019). Iso-tRNA-CP
evaluates the proportional contribution of each tRNA gene to its
corresponding isodecoder tRNA set (i.e. individual analyses among
all genes having the same tRNA anticodon sequence). Given that
mt-tRNA genes are represented by a single isodecoder gene (Juhling
et al., 2009), iso-tRNA-CP is only applicable to nuclear-encoded
(i.e. cytosolic) tRNAs. Results are accompanied by a principal com-
ponent analysis and can be visualized through heatmaps and inter-
active graphs and tables (Supplementary Fig. S3).

tRNAstudio also classifies reads derived from cytosolic pre-tRNAs
or processed tRNAs. We validated this function by analyzing datasets
enriched in reads derived from pre-tRNAs (Torres et al., 2015) or ma-
ture tRNAs (Zheng et al., 2015; Supplementary Fig. S4). The custom
tool for the trimming of soft-clipped bases implemented by
tRNAstudio aids in the correct assignment of reads to each category,
as it specifically detects reads bearing post-transcriptional 30-CCA
additions, or tRNAHis 50-G addition. These modifications are present
on processed tRNAs but may otherwise be confused as nucleotides
derived from pre-tRNA 30-trailer or 50-leader sequences, respectively
(further details in Supplementary Methods). We benchmarked this
function against a standard tool for trimming soft-clipped bases
(Biostar84452 from JVarkit). We find that both 30-CCA and 50-G
additions are removed from the reads when using JVarkit but are
retained when using tRNAstudio’s customized tool (Supplementary
Fig. S5A and B). Furthermore, tRNAstudio classifies reads as ‘likely
derived from pre-tRNAs’ or ‘likely derived from mature tRNAs’ (i.e.
processed tRNAs), based on the genomic coordinates of the mapped
tRNA reads and on the presence or absence of post-transcriptional nu-
cleotide additions (see Supplementary Methods). Using datasets
enriched in reads derived from mature tRNAs (Zheng et al., 2015),
we find that tRNAstudio assigns 99.3% of tRNA reads to the proc-
essed tRNA set when applying its custom classification strategy, while
only 68.5% of tRNA reads are classified into this group when using a
standard genomic coordinates-based classification method
(Supplementary Fig. S5C).

tRNAstudio uses a base-calling function to evaluate tRNA modifi-
cation levels. Reverse transcriptases generate mutations in the
obtained cDNA (and hence, in their derived sequencing reads) when
encountering modified tRNA bases. Analyses of datasets with
tRNAstudio revealed sequence variations that coincide with tRNA
positions known to undergo post-transcriptional modifications such
as positions 9 (m1G), 26 (m2

2G), 32 (m3C), 34 (I: inosine), 37 (m1I)
and 58 (m1A: 1-methyladenosine; de Crecy-Lagard et al., 2019;

Fig. 1. tRNAstudio GUI visualized in macOS systems
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Supplementary Fig. S6). Furthermore, analyses of datasets derived
from human cell lines depleted of ADAT2, the catalytic subunit of the
enzyme that catalyzes A-to-I conversion at positions 34 of tRNAs
(Torres et al., 2015), revealed a quantitative decrease in the modifica-
tion ratio at these positions without changes in the modification ratio
of unrelated positions such as 58 (m1A) (Supplementary Fig. S7A).
Likewise, we detected a specific decrease in the modification ratio at
positions 58 (m1A) when analyzing datasets derived from artificially
demethylated RNAs (Zheng et al., 2015), without alterations in the
modification ratio at positions 34 (I) (Supplementary Fig. S7B).
Interactive heatmaps aid in visualizing global base-calling results for
each position in every tRNA gene, and evaluating changes in modifi-
cation ratios at specific tRNA positions when samples are compared
(see Supplementary Discussion and Fig. S8).

tRNAstudio also reports on tRNA gene sequence coverages,
which can aid in the identification of bona fide tRFs. tRFs derived
from the 30-arm of tRNAArg

CCU and tRNAArg
UCG, and from the 50-arm of

tRNACys
GCA were shown to be abundant in human brain (Torres et al.,

2019). Using tRNAstudio, we analyzed datasets from human brain
and found that tRNA sequence coverages mapped to the abovemen-
tioned tRFs (Supplementary Fig. S9).

We show that tRNAstudio can extract biologically relevant infor-
mation from tRNA-Seq datasets, while allowing the analyses to be per-
formed in local mode and with a user-friendly GUI. This work brings
bioinformatics closer to experimental laboratories and will be useful to
accelerate the pace at which knowledge on canonical and non-canonical
tRNA biology expands (see Supplementary Discussion).
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